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Abstract

A nonlocal, ordinary peridynamic constitutive model is formulated to numerically
simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma-
terials, such as concrete. Classical mechanics and traditional computational modeling
methods do not accurately model the distributed fracture observed within this family
of materials. The peridynamic horizon, or range of influence, provides a characteristic
length to the continuum and limits localization of fracture. Scaling laws are derived
to relate the parameters of peridynamic constitutive model to the parameters of the
classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and
non-associated plastic flow is performed. An implicit integration algorithm is formu-
lated to calculate the accumulated plastic bond extension and force state. The gov-
erning equations are linearized and the simulation of the quasi-static compression of
a cylinder is compared to the classical theory. A dissipation-based peridynamic bond
failure criteria is implemented to model fracture and the splitting of a concrete cylinder
is numerically simulated. Finally, calculation of the impact and spallation of a con-
crete structure is performed to assess the suitability of the material and failure models
for simulating concrete during dynamic loadings. The peridynamic model is found to
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accurately simulate the inelastic deformation and fracture behavior of concrete during
compression, splitting, and dynamically induced spall. The work expands the types
of materials that can be modeled using peridynamics. A multi-scale methodology for
simulating concrete to be used in conjunction with the plasticity model is presented.
The work was funded by LDRD 158806.
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1 Introduction

There is significant motivation to use a nonlocal constitutive theory to model fracture in
heterogeneous materials, such as concrete. The physical reasons for nonlocality in engineering
materials have been summarized by Bazant [Bazant and Jirsek, 2002]. The reasons applicable
to concrete include: heterogeneity of microstructure; distributed cracking is a physically
observed phenomenon which cannot be simulated numerically with a local model; microcrack
growth is not dependent on the local stress or strain at the crack tip, but rather the stress field
within the inelastic region surrounding the crack tip; microcrack interaction, particularly the
amplification or shielding of one crack by another ; and size effects on quasibrittle failure.
In addition to these physical reasons, nonlocal modeling of concrete has been motivated by:
The need to maintain objectivity and convergent solutions in the case of localized damage;
and the need to regularize the boundary or initial-boundary value problem.

Nonlocal frameworks, both weak and strong, possess a range of influence, or characteristic
length. The characteristic length, of concrete has been determined to be approximately
2.7× the maximum aggregate size [Bazant and Pijaudier Cabot, 1989]. This dimension
corresponds to the strain-softening zone, or fracture process zone, ahead of a crack. A
nonlocal formulation is pertinent to modeling localization and dissipation in a strain softening
material since a local formulation tends to an infinitesimally small softening region and zero
dissipation as the mesh size goes to zero [Belytschko et al., 1986]. This dependence is
alleviated with a nonlocal formulation where nonlocal state variables serve as localization
limiters.

The earliest nonlocal plasticity models were formulated by Eringen [Eringen, 1981]. His focus
was not introducing localization limiters but to rather offer a continuum description of inter-
acting dislocations and the distribution of stress ahead of a crack in ductile metals. Bazant
& Lin introduced the first nonlocal model with strain softening plasticity [Bazant and Lin,
1988b]. Softening models containing an evolving nonlocal softening variable are among the
simplest nonlocal models of this type, and it was shown by Planas [Planas et al., 1996] that
they are equivalent to the cohesive crack model by Hillerborg [Hillerborg et al., 1976]. Other
models have implemented a combination of local and nonlocal softening parameters [Strm-
berg and Ristinmaa, 1996]. Bazant & Lin adapted a nonlocal smeared crack model from the
classical smeared crack model and stated that damage was dependent on a nonlocal average
of two principal strains [Bazant and Lin, 1988a]. They found that the model reproduced
Bazant’s size effect law and results demonstrated objectivity to mesh orientation. Bazant
& Ozbolt combined existing microplane and nonlocal damage models to create a nonlocal
microplane model that accounts for fracture, damage, and size effects [Bazant et al., 1990].
The ”Crush-Crack” model by diPrisco & Mazars uncoupled inelastic deformations due to
crushing and cracking with nonlocal evolution equations associated with each phenomena
[di Prisco and Mazars, 1996]. Their results showed that the model reproduces the behavior
of concrete under multiaxial, monotonic loading. Ferrara & Prisco implemented a nonlocal
damage model to study Mode I fracture in tension, 3-point bending, and wedge splitting
tests [Ferrara and Prisco, 2001] based on the Crush-Crack model [di Prisco and Mazars,
1996]. Most notably, they found that fixing the characteristic length guaranteed a unique
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result and by setting the characteristic length to the maximum aggregate size the fracture
process zone of concrete was well-replicated. Grassl & Jirasek formulated a local plasticity
model for concrete that included nonlocal damage evolution [Grassl and Jirsek, 2006].

Alternative methodologies to limit the localization of damage in strain softening materials
have been formulated. Viscosity has been shown by Needleman to preserve mesh objectivity
in the presence of diffuse damage [Needleman, 1988]. Additionally, the crack band model
by Bazant [Bazant and Oh, 1983] and the cohesive crack model [Hillerborg et al., 1976] by
Hillerborg are techniques that regularize a local continuum in the presence of damage.

The peridynamic theory of solid mechanics was first proposed by Silling to unify the mechan-
ics of continuous and discontinuous media in a single mathematically consistent framework
[Silling, 2000]. The theory states that any two material points within a finite distance can un-
dergo thermomechanical interaction through a bond. All bond forces were considered central
and independent of other neighboring bonds. This assumption leads to several restrictions
on the constitutive behavior, most notably the Poisson’s ratio of the material is 1

4
during

both elastic and inelastic deformation. To alleviate the restrictions of the original formula-
tion, Silling et al. introduced a generalized peridynamic theory that utilized peridynamic
states [Silling et al., 2007].

Two methodologies exist for modeling plasticity in peridynamics. The first utilizes an ap-
proximation of the classical deformation gradient tensor, derived by Silling et al. [Silling
et al., 2007]. All other kinematic quantities used in classical constitutive modeling are cal-
culated from the approximated deformation gradient in the traditional sense. Application
of a constitutive law facilitates the calculation of stress. The second methodology is the
formulation of a peridynamic plasticity model [Mitchell, 2011; Silling et al., 2007]. This
model introduced a new nonlocal yield condition [Mitchell, 2011; Silling et al., 2007] and
additionally was shown to adhere to the dissipation inequality of thermodynamics and was
linearized under small displacement fields [Mitchell, 2011].

The comparison of peridynamics to both the cohesive finite element method (CFEM) and
the extended finite element method (XFEM) in simulating dynamic crack growth through
glass, PMMA, and a composite sample with a weak matrix-particle interface was performed
by Agwai [Agwai et al., 2011]. It was found that all three methods produced similar crack
growth speeds, however, peridynamics most accurately captured crack tip instabilities and
bifurcation in glass and PMMA. It also accurately simulated the interface-debonding be-
havior of the composite. The effect of horizon size and discretization size on dynamic crack
growth was studied by Ha [Ha and Bobaru, 2010]. It was found that crack bifurcation and
the development of river patterns were independent of the either parameter, but the crack
growth rates converged for horizons less than 1 mm within a simulated 40 mm glass sample.
It was suggested that convergence requires the horizon at any length scale be adequately
small compared to the domain size. In a subsequent publication [Ha and Bobaru, 2011], sec-
ondary cracks due to stress wave reflections at specimen boundaries were found to propagate
from bifurcated crack paths, in agreement with experiment.

Most peridynamic studies have used a meshless discretization of bodies. This technique
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lends well to impact problems where element distortion and other issues would limit the
efficacy of finite element methods. Despite this strength, in-depth studies of impact using
peridynamics are limited. Qualitative examples of the perforation of ductile plates [Macek
and Silling, 2007] and penetration of concrete other brittle materials [Huang et al., 2011;
Macek and Silling, 2007; Silling and Askari, 2005] have been presented. Xu [Xu et al., 2008]
and Askari [Askari et al., 2011] have studied the development of internal damage in laminate
composites subjected to low-velocity impact. Recently, the experimental and peridynamic
analysis of the impact of a glass plate demonstrated that peridynamics replicates the fracture
patterns, crack speeds, and amount of ejected impact-face material found in experiment [Hu
et al., 2013]. Application of peridynamics to concrete is limited [Gerstle et al., 2007; Huang
et al., 2011] and these studies do not account for the inelastic behavior of the material.

In this study, a pressure-dependent nonlocal plasticity model is formulated to study inelas-
ticity and failure in concrete. The parameters of the model governing strength and inelastic
flow are scaled, using the peridynamic horizon, to parameters in the classical Drucker-Prager
model. A dissipation-based bond failure criteria is implemented to model fracture follow-
ing inelastic flow with high fidelity. Numerical simulation of a single peridynamic bond
along with full-scale simulations of cylinder compression, cylinder splitting, and impact in-
duced spallation are analyzed. The model is found to replicate the behavior of concrete in
each of the three loading configurations analyzed and offer distinct advantages over classical
mechanics and traditional computational modeling methodologies. The work expands the
types of materials that can be modeled using peridynamics. A multi-scale methodology for
simulating concrete to be used in conjunction with the plasticity model is presented.
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2 Theoretical Framework

2.1 Peridynamic theory

Within a peridynamic body, B, a material point, x, interacts with all other material points,
x′, within a distance of δ, or horizon, through a peridynamic bond, ξ. All of the points with
a distance of δ from x constitute its neighborhood, Hx. All the bonds connecting x to its
neighborhood are called its family. In the reference configuration ξ = x′−x = X〈ξ〉, where X
is the reference vector state. Any thermodynamic interaction between x and x′ is permitted,
but only mechanical interactions will be considered here. Application of a deformation field
to B generates the deformed bond Y〈ξ〉 = y′ − y, where y′ and y are the coordinates of x′

and x in the current configuration and Y is the deformation vector state. An illustration
of a peridynamic body in the reference configuration is shown in Figure 1. Peridynamic
states are bond operators and the operation on a bond is denoted with angled brackets 〈◦〉.
All vector states will be denoted with underlined, upper-case, bold Roman characters. The
deformation vector state is the fundamental kinematic quantity of peridynamics, analogous
to the deformation gradient tensor in the classical theory.

x'

x δ

ξ
HxB

Figure 1: Illustration of a peridynamic body, B. All material points, x′, within the peridy-
namic horizon, δ, comprise the neighborhood of x, Hx, and interact via a peridynamic bond,
ξ.

For linear materials, the peridynamic force vector state is defined as T = ∇W (Y), where
W is a scalar strain energy potential and ∇ is the Frechet derivative operator. The sum of
all resulting forces at x is substituted into the equation of motion yielding∫

Hx

(T〈ξ〉 −T′〈−ξ〉) dVx′ + b = ρü, (1)

where b is the body force density, ρ is the density of the material, and ü is the acceleration.
The Frechet derivative of a scalar-valued state function, such as the elastic strain energy
potential, is defined as

W (Y + dY) = W (Y) +∇W (Y) • dY + O ||dY||. (2)
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Prior to the introduction of ordinary peridynamic materials and the focus of this work,
several operators and identities in the peridynamic theory must be presented. The first is
the point product of two peridynamic vector states defined as

A •B =

∫
Hx

A〈ξ〉 ·B〈ξ〉dVξ, (3)

and the point product of two scalar states defined as

a • b =

∫
Hx

a〈ξ〉b〈ξ〉dVξ. (4)

All scalar states will be denoted by underlined, lower-case, Roman characters. The point
product is a non-local, scalar quantity, dependent on all the bonds in the family of x.
Strain energy, dissipation, pressure, and dilatation are all scalar quantities requiring point
product calculations. Additionally, the scalar magnitude state of a vector state is defined as
|A|〈ξ〉 = |A〈ξ〉| = a〈ξ〉. This relation will be used extensively in the formulation of ordinary,
peridynamic materials.

2.2 Linear ordinary solids

A material is ordinary when the deformation state and force state are collinear. In this case
it is convenient to simplify the reference and deformation states to scalar magnitude states,
defined as x = |X| and y = |Y|, respectively. The extension state is then defined as e = y−x
and it is decomposed into isotropic and deviatoric components i.e., e = ei + ed.

The strain energy potential for a linear, ordinary solid has been shown to be

W
(
θ, ed

)
=

1

2
kθ2 +

15µ

2m

[
ed •

(
ωed
)]
, (5)

where m = (ωx) •x is a weighted volume term in the reference configuration; θ = 3
m

(ωx) • e
is the dilatation; k and µ are the bulk and shear moduli of the material, respectively; and ω
is the influence state [Silling et al., 2007].

To avoid expressing the strain energy potential in terms of dilatation, which requires using
pressure as a work conjugate, the strain energy potential is reformulated in terms of ei.
Knowing that ei = θ

3
x, the strain energy potential is restated as

W
(
ei, ed

)
=

9k

2m

[
ei •

(
ωei
)]

+
15µ

2m

[
ed •

(
ωed
)]
. (6)

For convenience, constants are defined to accompany the isotropic and deviatoric parts of of
the strain energy, κ = 9k

m
and α = 15µ

m
, yielding

W
(
ei, ed

)
=
κ

2

[
ei •

(
ωei
)]

+
α

2

[
ed •

(
ωed
)]
. (7)
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Peridynamic bond forces and bond deformation are co-linear for ordinary materials, i.e.,

T = t

(
Y

|Y|

)
= tM, (8)

where M is the direction vector state. It then follows that the force state is defined as
t = ∇W , where ∇ is the Frechet derivative operator. The force state is then

t = κωei + αωed. (9)

2.3 Pressure-sensitive plasticity

An ordinary plasticity model is formulated to model the pressure-dependent plastic behavior
of material that is typical in brittle and quasi-brittle materials. Both the isotropic and
deviatoric parts of the extension state is split into elastic and plastic parts, i.e., ei = eie + eip

and ed = ede + edp, respectively. It follows that the strain energy potential of the material is
restated as

W
(
ei, ed, eip, edp

)
=
κ

2

[(
ei − eip

)
• ω
(
ei − eip

)]
+
α

2

[(
ed − edp

)
• ω
(
ed − edp

)]
, (10)

and the force state is calculated as

t = κω
(
ei − eip

)
+ αω

(
ed − edp

)
. (11)

The notation and procedure used to formulate the plasticity model follows prior work by
Mitchell [Mitchell, 2011]. A space of all force scalar states S, analogous to the Westergaard
stress space, and a set within that space, N , of allowable states is defined as

N = {t ∈ S | F (t, t0) = f (t)− t0 ≤ 0}, (12)

where F is the yield surface enclosing set N , f is a function of the force scalar state, and t0
is a material strength parameter. An illustration of the pressure-dependent yield criterion is
shown in Figure 2. All force states for which F ≤ 0 are produced by elastic deformations.
For F > 0 the deformation is plastic. In this case the increment of plastic deformation must
be calculated and the force state must return to the yield surface. For now, it is asserted
that plastic flow is associated, thus, the plastic increment of the extension state is

ėp = λ∇F, (13)

where λ is a scalar plastic multiplier and ėp possesses both isotropic and deviatoric parts.
The pressure-dependent peridynamic yield surface equation is defined as

F =
(
td • td

) 1
2 − βp− t0 ≤ 0, (14)

where β is an internal friction constant and p is the peridynamic pressure. The role of the
second term is to include pressure dependency in the yield behavior. While stress and pres-
sure possess consistent units, it is easily observed that the force scalar state and pressure will

15



Elastic region

Figure 2: The pressure-dependent peridynamic yield surface, F = 0, separates elastic and
plastic deformations within the force state space. Plastic extension is drawn outward from
the surface.

not have consistent units. It will be shown later that β is not a unit-less parameter; it pos-
sesses units of length and is dependent on the size of the peridynamic horizon. Substitution
of Equation 14 into Equation 13 yields

ėp = λ

 td(
td • td

) 1
2

+
βx

3

 . (15)

Enforcing the consistency condition from classical plasticity, λḞ = 0, and utilizing the
identities, td • ėi = 0 and x • ėd = 0, facilitates the calculation of λ to be

λ =
κω∇iF • ėi + αω∇dF • ėd

κω∇iF • ∇iF + αω∇dF • ∇dF
, (16)

where ∇iF and ∇dF are the isotropic and deviatoric portions of the Frechet derivative of the
yield function, respectively. By inspection, the denominator of λ is positive for any plastic
increment. For elastic deformations and any deformation tangent to the yield surface it is
shown that λ is zero by the consistency condition. Additionally, λ is positive for any plastic
increment. Under any increment of plastic extension, the numerator of λ is also non-negative.
It is observed that in the absence of isotropic forces and plastic extension increments, the
flow rule presented in [Silling et al., 2007] is recovered.

2.4 Non-associated flow

For most pressure-dependent materials, the volumetric plastic strain is not accurately mod-
eled using an associated flow rule. The peridynamic plastic flow potential is defined as

G =
(
td • td

) 1
2 + ψp, (17)

where ψ is a dilatation constant. The increment in the plastic extension state is calculated
as before to be

ėp = λ

 td(
td • td

) 1
2

+
ψx

3

 , (18)
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and the plastic multiplier, which is dependent on both the yield surface and flow rule becomes

λ =
κω∇iF • ėi + αω∇dF • ėd

κω∇iG • ∇iG+ αω∇dG • ∇dG
. (19)

It is clear that the properties of λ previously derived for associated flow are true for non-
associated flow. The thermodynamic implications of choosing an associated or non-associated
flow rule will be presented later.

2.5 Plasticity model parameter calculation

The parameters t0, β, and ψ are related to the local, classical Drucker-Prager theory. The
derivation of t0 follows the procedure shown by Mitchell [Mitchell, 2011]. Under a purely
deviatoric deformation the yield condition simplifies to be(

td • td
) 1

2 = t0. (20)

In the absence of bond damage and the assumption that ω〈ξ〉 = 1, the deviatoric part of
the force state is td = αed. It was shown by Mitchell that for purely deviatoric deforma-

tions
(
ed • ed

) 1
2 =

(
4πγ2δ5

75

) 1
2
, where γ is the magnitude of the shear strain [Mitchell, 2011].

Substituting these values, along with the constant α, into Equation 20 yields

6µγmax
m

(
πδ5

3

) 1
2

= t0. (21)

If it is assumed that the maximum allowable shear stress is τ0 = µγmax, the maximum
allowable t0 is

t0 = τ0

[
6

m

(
πδ5

3

) 1
2

]
. (22)

To determine the friction coefficient, β, a purely isotropic loading is assumed to induce
yielding and the yield surface equation simplifies to

−βp0 = t0, (23)

where p0 is the failure pressure in hydrostatic tension. Substituting the value for t0 obtained
earlier yields

β =
τ0

−p0

[
6

m

(
πδ5

3

) 1
2

]
. (24)

It is clear that the ratio of the cohesion strength to the failure pressure is exactly tan (βDP ),
where βDP is the friction angle in the classical Drucker Prager theory. The resulting equation
for β is

β = tan (βDP )

[
6

m

(
πδ5

3

) 1
2

]
. (25)
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The dilatation constant, ψ, is assumed without derivation to have the same scaling to the
classical Drucker-Prager dilatation angle, ψDP , as the friction angle has to the classical
Drucker-Prager friction angle, i.e.,

ψ = tan (ψDP )

[
6

m

(
πδ5

3

) 1
2

]
. (26)

2.6 Thermodynamics of associated and non-associated flow

The dissipation inequality of thermodynamics is unconditionally satisfied for associated plas-
tic flow in classical plasticity. The associated and non-associated flow rules are analyzed
to verify their adherence to the dissipation inequality following the procedure outlined by
Silling & Lehoucq [Silling and Lehoucq, 2010]. Although thermodynamic admissibility is
not a requirement for a constitutive law, disagreement with the First and Second Laws of
Thermodynamics lacks congruency with physical understanding of the mechanical behav-
ior of materials. Ignoring effects of temperature, the dissipation inequality for an ordinary
peridynamic solid is

t • ė− Ẇ ≥ 0. (27)

Splitting the force state and increment in plastic extension state into deviatoric and isotropic
parts and application of the chain rule of calculus yields(

ti − ∂W

∂ei

)
• ėi +

(
te − ∂W

∂ed

)
• ėd − ∂W

∂ep
• ėp ≥ 0. (28)

The first two terms reduce to zero by definition of the force state. Substitution of the
constitutive model and associated flow rule yields

t • ėp ≥ 0

td • ėdp + t • ėip ≥ 0

λ
[(
td • td

) 1
2 − βp

]
≥ 0

t0 ≥ 0.

(29)

All materials possess non-negative strength, thus, it is shown that the dissipation inequality
of thermodynamics is satisfied for any increment in force state. The corresponding dissipation
inequality for non-associated flow reduces to

t0
p
≥ (β − ψ) . (30)

It is observed that the dissipation inequality is only satisfied for a finite combination of
material properties and pressures. In the limit of high confining pressure, the dissipation
inequality is only satisfied by associated flow.
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2.7 Damage

Damage in a peridynamic material is defined as

φ = 1−
∫
Hx
d (ξ) dVξ∫
Hx
dVξ

, (31)

where d is a boolean variable that equals 0 when a bond is broken and 1 otherwise. Damage
models that use critical bond stretch [Silling and Askari, 2005] and critical bond strain energy
density failure [Foster et al., 2011] criteria have been formulated, but neither accurately
characterize the tension-compression asymmetries that exist during the failure of pressure-
dependent materials. It is natural to link the damage model of the material to its constitutive
model. Inelasticity in tension and shear is accommodated by the formation and growth of
cracks on smaller length scales in concrete, so it is clear that inelastic dissipation in tension
and shear is produced by fracture. It was shown by Foster & Silling [Foster et al., 2011] that
the critical energy density for bond failure for a peridynamic material is

wc =
4G

πδ4
, (32)

where G is the critical energy release rate of the material. Under the condition that the
material has yielded, the dissipation rate of a single bond, ξ is

ẇd = ti〈ξ〉ėip〈ξ〉+ td〈ξ〉ėdp〈ξ〉. (33)

Under the condition that
∫ t
t0
ẇddt = 4G

πδ4
, the bond is considered broken. Many cementi-

tious materials strain soften, this effect will be modeled by the progressive failure of bonds.
Fracture with strain softening of individual peridynamic bonds will not be analyzed.
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3 Numerical Implementation and Verification of

Plasticity Model

The pressure-dependent peridynamic plasticity and damage models are implemented within
the open-source peridynamic solver Peridigm [Parks et al., 2012]. Within Peridigm, bodies
are discretized into material points with finite mass. As a result the integral equations
governing strain energy, the equation of motion of a material point, the yield surface, and
the plastic multiplier are replaced with finite sums summed over all the bonds in the family
of a material point.

3.1 Numerical integration

A backward Euler numerical integration algorithm is implemented to calculate the deviatoric
and isotropic parts of the plastic extension state. The approach is extension state driven and
the force state is mapped back to the yield surface using a path normal to the flow potential,
similar to the strain-driven approach used in classical plasticity. Subscripts of n and n + 1
denote state values at times t and t+ ∆t, respectively.

Trial values of the deviatoric and isotropic force states are calculated using the constitutive
laws and the deviatoric and isotropic parts of the force state at the next time step are
determined to be

tdn+1 = tdtrial − αω∆λ

 tdn+1(
tdn+1 • tdn+1

) 1
2

 (34)

and

tin+1 = titrial − κω∆λ

(
ψx

3

)
, (35)

respectively, where ∆λ = λ∆t. If the deformation is elastic, F (ttrial) ≤ 0, ∆λ = 0, and the
deviatoric and isotropic force states at the next time step will be the trial values, tdn+1 = tdtrial
and tin+1 = titrial, respectively. If F (ttrial) > 0, the deformation is inelastic and the necessary
∆λ to return the yield surface and the deviatoric and isotropic parts of the plastic extension
state increment and force state must be calculated.

Similar to Silling [Silling et al., 2007], it is asserted that deviatoric extensions have no effect
on the pressure. However, the increment in isotropic plastic extension affects the pressure
and an update of the pressure must be calculated, using the increment in isotropic plastic
extension, is necessary to ensure consistency. The pressure at tn+1 is determined to be

pn+1 = ptrial + k∆λψ. (36)

Substitution of the yield function, Equation 14, at tn+1 and Equation 36 into Equation 34
yields

tdn+1 =
tdtrial

1 +
[

αω∆λ
(ptrial+k∆λψ)β+t0

] . (37)
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The values of tdn+1 and pn+1 are substituted into the yield criterion at tn+1, consistency is
enforced, and ∆λ is calculated as

∆λ =

(
tdtrial • tdtrial

) 1
2 − βptrial − t0

α + kβψ
. (38)

The isotropic force state, isotropic plastic extension state, and deviatoric plastic extension
state immediately follow as

tin+1 = titrial − κω∆λ

(
ψx

3

)
, (39)

eipn+1 = eipn + ∆λ

(
ψx

3

)
, (40)

and

edpn+1 = edpn + ∆λ

[
tdn+1

(βpn+1 + t0)

]
, (41)

respectively.

3.2 Linearization

The constitutive relations presented are linear with respect to the bond extension state,
but not the displacement field. A linearized version of the kinematics and constitutive
relations follow. The linearized theory will provide an exact solution for the modulus state,
K, analogous to the 4th order elastic stiffness tensor, Cijkl, from classical mechanics.

The displacement vector state, U, associated with the displacement field, u, is defined as

U [x, t] 〈ξ〉 = u (q, t)− u (x, t) , (42)

where ξ = q − x. The displacement field is assumed to have small magnitude. The force
state after the superposition of the small increment in the displacement field is

T
(
Y0 + dU

)
= T

(
Y0
)

+ K • dU. (43)

The modulus state, K, is a double state defined as

K = ∇T
(
Y0
)
. (44)

Linearization of the pressure-dependent model follows a similar procedure as done by Silling
[Silling, 2010] and later by Mitchell [Mitchell, 2011]. The kinematic variables e, ed, θ, and
M are first linearized, followed by the pressure-dependent constitutive model.

Linearization of the extension state, e, for small displacements yields

∇e •U =
∂

∂ε

[(
Y0 + εU

)
·
(
Y0 + εU

)] 1
2 |ε=0

= M •U

=

∫
∆ (ξ − η) M

(
Y0
)
〈ξ〉 ·U〈ξ〉dVξ,

(45)
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where ∆ is the Dirac delta function. Linearization of the dilatation, θ = 3
m

(ωx • e), naturally
follows as

∇θ •U =
∂

∂ε
θ
(
Y0 + εU

)
|ε=0

=
3

m
(ωxM •U)

=
3

m

∫
ω (|ξ|) |ξ|M

(
Y0
)
〈ξ〉 ·U〈ξ〉dVξ.

(46)

Computation of the linearized extension state and dilatation permits the simple calculation
of the linearized deviatoric extension state as

∇ed •U =
∂

∂ε
ed
(
Y0 + εU

)
|ε=0

=
∂

∂ε

[
e
(
Y0 + εU

)
− θx

3

(
Y0 + εU

)]
|ε=0

= M •U− 1

m
(xωxM •U)

=

∫
∆ (ξ − η) M

(
Y0
)
〈ξ〉 ·U〈ξ〉dVξ

− 1

m

∫
ω (|ξ|) |ξ|2M

(
Y0
)
〈ξ〉 ·U〈ξ〉dVξ.

(47)

Finally, linearization of the direction vector state yields

∇M •U =
∂

∂ε
M
(
Y0 + εU

)
|ε=0

=

[
I−M

(
Y0
)
〈ξ〉 ⊗M

(
Y0
)
〈ξ〉

|Y0|〈ξ〉

]
U

=

∫
∆ (ξ − η)

[
I−M

(
Y0
)
〈ξ〉 ⊗M

(
Y0
)
〈ξ〉

|Y0|〈ξ〉

]
UdVη.

(48)

The linearized force vector state is

∇T •U = (∇tM + t∇M) •U. (49)

The incremental force state equations for the pressure-dependent model are now substituted
into Equation 49, i.e.,

∇tn+1 •U =
(
∇tin+1 +∇tdn+1

)
•U. (50)

Substitution of the isotropic part of the force state yields

∇tin+1 •U = ∇
[
titrial − κω∆λ

(
ψx

3

)]
•U

=
κ

3
(ωx∇θ) •U− κψ

3
(ωx∇∆λ) •U.

(51)
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The plastic multiplier, ∆λ, must also be linearized and follows as

∇∆λ •U =
1

γ
∇
[(
tdtrial • tdtrial

) 1
2 − βptrial − t0

]
•U

=
1

γ

 tdtrial(
tdtrial • tdtrial

) 1
2

∇tdtrial + βk∇θ

 •U,

(52)

where γ = α + kβψ and ∇tdtrial • U = αω
[
M
(
Y0
)
•U− 1

3
x (∇θ •U)

]
. Assembling the

terms for the isotropic part of the force state and noting that
∫
tdtrial〈ξ〉x〈ξ〉dVξ = 0 [Silling

et al., 2007] yields

∇tin+1 •U =

(
3k

m
− 3k2βψ

γm

)
(ωx∇θ) •U

=

(
9k

m2
− 9k2βψ

γm2

)∫
ω2 (|ξ|) |ξ|2M

(
Y0
)
〈ξ〉 ·U〈ξ〉dVξ.

(53)

Substitution of the deviatoric portion of the force state yields

∇tdn+1 •U = ∇

[
tdtrial

1 + αω∆λ
(ptrial+k∆λβ)ψ+t0

]
•U

=
α
[
φωM

(
Y0
)
− 1

3
φωx (∇θ)

]
•U

φ+ αω∆λ

+ tdtrial

[
(kαβψω∆λ∇∆λ− kαψω∆λ∇θ − αφω∇∆λ) •U

(φ+ αω∆λ)2

]
= α

∫
φω (|ξ|) M

(
Y0
)
〈ξ〉 ·U〈ξ〉

φ+ αω∆λ
dVξ −

α

m

∫
φω2 (|ξ|) |ξ|2M

(
Y0
)
〈ξ〉 ·U〈ξ〉

φ+ αω∆λ
dVξ

+
kα2βψ

γ

∫
||tdtrial||∆λω (|ξ|) M〈ξ〉 ·U〈ξ〉

(φ+ αω∆λ)2 dVξ

− α2

γ

∫
||tdtrial||ω2 (|ξ|) ∆λφM〈ξ〉 ·U〈ξ〉

(φ+ αω∆λ)2 dVξ.

(54)

The isotropic and deviatoric components are combined to yield the linearized force state,

∇tn+1 •U =

(
9k

m2
− 9k2βψ

γm2

)∫
ω2 (|ξ|) |ξ|2M

(
Y0
)
〈ξ〉 ·U〈ξ〉dVξ

+ αφ

∫
ω (|ξ|) M

(
Y0
)
〈ξ〉 ·U〈ξ〉

φ+ αω∆λ
dVξ −

αφ

m

∫
ω2 (|ξ|) |ξ|2M

(
Y0
)
〈ξ〉 ·U〈ξ〉

φ+ αω∆λ
dVξ

+
kα2βψ||tdtrial||∆λ

γ

∫
ω (|ξ|) M〈ξ〉 ·U〈ξ〉

(φ+ αω∆λ)2 dVξ

− α2||tdtrial||∆λφ
γ

∫
ω2 (|ξ|) M〈ξ〉 ·U〈ξ〉

(φ+ αω∆λ)2 dVξ.

(55)

24



4 Results

4.1 Numerical simulation of a 2-point, 2-bond system

Numerical simulation of a 2-point, 2-bond peridynamic system is performed to verify that the
model correctly integrates the plastic extension state, preserves consistency, and produces
non-negative dissipation rates during plastic deformation. The configurations for deviatoric
and isotropic deformations are shown in Figure 3. One material point is fixed; in both
simulations it is the lower material point labeled S. In the deviatoric and isotropic tests, the
position of the second point is translated in the x and y directions, respectively. The material
point starts at x0 or y0 and is sequentially translated to positions 1, 2, and 3. Material
properties of high-performance concrete are assigned to the bond. The elastic modulus is 53
GPa and the Poisson’s ratio is 0.17 [Sorelli et al., 2008]. The cohesion strength and friction
angle are chosen such that the yield strength in tension and compression are 10 MPa and
200 MPa, respectively. Associated plastic flow is assumed. In both unit tests, the initial
spacing between the material points is 3 mm, corresponding to the estimated characteristic
length of a high-performance concrete continuum with a maximum aggregate size of 1 mm.
The force densities at which the systems will yield, for deviatoric and isotropic deformations,
are analytically calculated as 1.09× 1014 N/m3 and 1.40× 1010 N/m3, respectively.

12 3x1
0

3 mm

S

(a)

2

1

x2
0

3

S

x2

x1
(b)

Figure 3: Unit test configuration for a 2-point, 2-bond peridynamic system for (a) deviatoric,
and (b) isotropic, deformations. Stationary points in each simulation are labeled S. Points
x0

1 and x0
2 are progressively translated in x1 and x2, respectively, to positions 1, 2, and 3.

The results of the unit tests for deviatoric and isotropic deformations are found in Figure 4(a)
and Figure 4(b), respectively. It is found that calculated force densities and bond extensions
at yield agree with the analytical solutions. The deviatoric test exhibits hysteresis and
plastic consistency. The isotropic test exhibits yielding and plastic consistency in isotropic
tension and linear-elastic behavior in isotropic compression. Both tests clearly demonstrate
non-negative dissipation rates during plastic deformation.
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(a) Deviatoric deformation

(b) Isotropic deformation

Figure 4: Unit test results for (a) deviatoric, and (b) isotropic, deformation of a 2-point,
2-bond peridynamic system. Numerical calculations agree with analytical solution for the
force densities and extensions at yield. The integration algorithm accurately predicts plastic
consistency and produces non-negative dissipation rates.

4.2 Quasi-static cylinder compression

The compression of a cylinder is simulated to verify that the scaling laws derived to relate t0,
β, and ψ to the parameters of the classical Drucker-Prager plasticity model are correct. The
target compressive strength for all cylinder compression simulations is 200 MPa; tan (βDP ) is
assigned values of 0, 0.25, 0.50, 1.00, and 1.50 and the necessary t0 to achieve a compressive
strength of 200 MPa is then calculated. The model configuration is shown in Figure 5. A
linearly varying displacement field of u3 = −0.004x3 is applied to all material points in the
boundary volume regions, shown in blue. The reaction forces are summed over the boundary
regions to determine the force necessary to compress the cylinder. Engineering stress and
strain are calculated in the traditional sense. The effects of horizon size and grid refinement
are analyzed.

Results for simulations performed with a nominal grid spacing, dx, of 5 mm are shown in
Figure 6. The horizon size is refined from 15 mm to 7.5 mm. As the horizon is refined, the
elastic modulus is found to tend towards the input value of 53 GPa, while the compressive
yield strength is found to tend away from the target value of 200 MPa. Simulations with
tan (βDP ) = 1.50 possess poorer convergence than those with smaller tan (βDP ) values.

The results of simulations performed with the smallest horizon of 7.5 mm with varying grid
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50 mm

Boundary volume
constraints 50 mm

x3

x2x1

Figure 5: Cylinder compression configuration used for constitutive model comparison to the
classical theory. Constant strain conditions are applied to the boundary volume regions at
the top and bottom of the cylinder, shown in blue.

spacing is shown in Figure 7. As the grid spacing is decreased from 5 mm to 2.5 mm, the
elastic modulus and compressive yield strength are observed to converge towards their input
and target values, respectively. Even at the smallest horizon size and grid spacing analyzed,
the elastic modulus differs by 10% from the input value. It is proposed that the elastic
modulus would continue to converge to the input value with decreasing horizon, such that
the horizon is significantly smaller than the cylinder diameter. Calculations on the surface
of the cylinder are performed over, at most, half the number of points as the interior of
the body, thus, point product calculations are more sensitive to heterogeneity in the volume
discretization of the body. As the horizon size is decreased the influence of calculations
performed over points on the surface also decreases. Additionally, it has been reported that
the shear stiffness along the boundary of a body requires a correction factor [Oterkus et al.,
2012].

4.3 Cylinder splitting

The splitting of a concrete cylinder is simulated to verify the engineering tensile strength
calculated by the new constitutive model. The internal friction constant is the same for
all simulations, tan (βDP ) = 1.5. tan (ψDP ) is varied from zero to 1.5, corresponding to
non-associative flow with no volumetric component and associated flow, respectively. The
cylinder splitting model configuration is shown in Figure 8. An explicit time integration
algorithm is used to solve for the plastic extension and force states at each successive time
step. The smaller stable time step, inherent to explicit calculations, is better suited for
maintaining stability in simulations with bond failure since it assures that fewer bonds will
fail during each step. The platen at the bottom of the cylinder undergoes zero displacement
in x2 and the platen at the top is displaced in −x2 at a rate of 50 mm/s. A low strain
rate was chosen to remove the effects of inertia and large stress wave reflections that may
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Figure 6: Stress-strain results for cylinder compression simulations with 5 mm grid spacing
and horizon sizes of (a) 15 mm; (b) 12.5 mm; (c) 10 mm; and (d) 7.5 mm. The elastic
modulus is found to tend towards the input value of 53 GPa, while the compressive strength
tends away from the target value of 200 MPa.

influence the fracture behavior.

Representative splitting behavior is shown in Figure 9. In this particular simulation the
material possessed a fracture energy of 100 J/m2 and a dilatation constant of zero. Figure
9(a), Figure 9(b), and Figure 9(c) show the x1 component in the displacement field when the
top platen has displaced 0.02 mm, 0.04 mm, and 0.06 mm, respectively, in x2. A displacement
gradient in the x1 direction produces tensile stresses, bond damage, and failure through the
development of a critical vertical crack in the x2 direction. The damage fields that these
three stages of platen displacement are shown in Figure 9(d), Figure 9(e), and Figure 9(f),
respectively. At a platen displacement of 0.04 mm, damage is found to localize at the edges
of the contact region between the cylinder and platens and along a vertical path through
the center of the cylinder. A critical crack, indicated by contiguous damage values of 0.5, is
formed after 0.06 mm platen displacement and is then followed by failure.

The dynamic load applied to the top platen is tracked throughout the simulations. The
dynamic load at failure, Pmax, is computed and substituted into the equation σsp = 2Pmax

πdL
,

provided by ASTM C496 to calculate the splitting strength, σsp, where d and L are the
diameter and length of the cylinder, respectively [ASTM, 2009]. The splitting stress as a
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Figure 7: Stress-strain results for cylinder compression simulations with 7.5 mm horizon and
grid spacing of (a) 5 mm, (b) 3.75 mm, (c) 3 mm, and (d) 2.5 mm show that the elastic
modulus and yield strength converge to their input and target values with grid refinement,
respectively.

function of platen displacement for cylinders with a fracture energy of 100 J/m2 are shown
in Figure 10. The splitting stress at failure is found to be higher than the target splitting
stress and increases with increasing ψ. As ψ increases, the positive volumetric flow upon
yielding increases. Under confinement of the platens the pressure will, thus, also increase.
This increase in pressure will result in a higher splitting strength.

The splitting strength for four values of fracture energy, 10 J/m2, 100 J/m2, 1 kJ/m2, and
10 kJ/m2, plotted as a function of ψ, is shown in Figure 11. In addition to increases in ψ
resulting in an effective increase in the splitting strength, increases in fracture energy are
also observed to have a similar effect. Splitting strength is observed to agree with the target
strength for brittle and quasi-brittle fracture energies of 10 J/m2 to 100 J/m2. As the fracture
energy and dilatation constant are increased greater amounts of volumetric expansion occurs,
increasing the pressure, and thus increasing the effective splitting strength.
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Figure 8: Engineering-scale cylinder splitting test configuration used to calculate the effective
splitting strength of a concrete cylinder.

4.4 Impact and Spall

The final simulation configuration used to verify the material and damage models is the
low velocity impact and spall of a concrete structure. The model configuration is shown in
Figure 12. A concrete structure is idealized as a cylinder enveloped by a boundary volume
region that restricts displacement in x1 and x2. The resulting deformation is plane strain
in x3. To induce a compressive wave, a region of thickness 2δmax is given an initial velocity,
v0, where δmax is the maximum horizon size analyzed among all simulation models. Models
with imparted initial velocities of 10 m/s, 25 m/s, and 50 m/s are analyzed. The use of a
constant 2δmax ensures equal imparted kinetic energies, near-steady state wave propagation,
and equal pulse width for all model configurations. The cylinder is modeled as a pressure-
dependent solid with a compressive strength of 200 MPa, tan (βDP ) = 1.5, tan (ψDP ) = 0.4,
density of 2.53 g/cm3, and G0 = 100 J/m2.

Visualization of representative damage fields and spallation after impact are shown in Figure
13. Figure 13(a), Figure 13(b), and Figure 13(c) show damage fields with v0=10 m/s.
During these simulations a crack, signified by planar damage fields with values equal to
0.5, is observed on the rear face. No front face scabbing occurs during these simulations.
Figure 13(d), Figure 13(e), and Figure 13(f) show damage fields with v0=50 m/s. Rear
face spallation is observed. Additionally, fragmentation of material is more severe than in
simulations with v0=10 m/s; damage values in the spalled region range from 0.8-1. Front
face scabbing is observed. The effect of horizon size and grid spacing is analyzed. Figure
13(a) and Figure 13(d) show damage fields produced with δ=15 mm and dx=5 mm; Figure
13(b) and Figure 13(e) show damage fields produced with δ=7.5 mm and dx=5 mm; and
Figure 13(c) and Figure 13(f) show damage fields produced with δ=7.5 mm and dx=2.5
mm. The rear face spall depth for all model configurations is plotted as a function of
imposed velocity in Figure 14(a). Spall depth does not exhibit strong dependence on the
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Figure 9: Representative x1-displacement fields when the displacement of the top platen
is (a) 0.02 mm, (b) 0.04 mm, and (c) 0.06 mm illustrate the displacement gradient that
produces tensile σ11. The resulting damage fields when the displacement of the top platen
is (d) 0.02 mm, (e) 0.04 mm, and (f) 0.06 mm illustrate the initiation and propagation of a
critical crack in the x2 direction.

grid spacing, but does show dependence on the horizon size and to a lesser degree the
imposed velocity. Velocity calculations on the rear surface are taken during dynamic testing.
These calculations in combination with the balance on linear momentum on the free surface
facilitate determination of the spall strength, σspall = 1

2
ρCL∆vfree, where ρ is the material

density, CL is the longitudinal wave speed in the material, and ∆vfree is the difference
between the first two peaks in the velocity profile on free surface.

The spall strength for all imposed velocities and model configurations is shown in Figure
14(b). Spall strength is observed to be independent of the strength of the imposed impact
and the model configuration. Dynamic testing of ordinary, high-performance, and ultra-high
performance concretes to range from 15-50 MPa [Millon et al., 2009]. The spall strengths
determined from simulation are in agreement with experiment.
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Figure 10: Splitting stress as a function of platen displacement for cylinders with a fracture
energy of 100 J/m2 plotted against the target splitting strength. Volumetric plastic extension
is found to increase the strength by providing additional confinement pressure.
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Figure 11: Splitting strength as a function of dilatation constant for cylinders with fracture
energies of 10 J/m2, 100 J/m2, 1 kJ/m2, and 10 kJ/m2 plotted against the target splitting
strength. Splitting strength results are found to agree with the target value for brittle and
quasi-brittle fracture energies of 10 J/m2 and 100 J/m2. As the fracture energy is further
increased, deviation from the target strength is observed.
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Figure 12: Model configuration for low velocity impact simulations used to calculate spall
depth and strength.
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Figure 13: Visualization of the damage field after impact and spallation for, (a) δ=15 mm,
dx=5 mm, v0=10 m/s; (b) δ=7.5 mm, dx=5 mm, v0=10 m/s; (c) δ=7.5 mm, dx=2.5 mm,
v0=10 m/s; (d) δ=15 mm, dx=5 mm, v0=50 m/s; (e) δ=7.5 mm, dx=5 mm, v0=50 m/s;
and (f) δ=7.5 mm, dx=2.5 mm, v0=50 m/s reveals rear-face spall and fragementation at low
and high impact velocities, respectively, and front-face scabbing at high impact velocities.
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Figure 14: Rear-face velocity measurements facilitate (a) Spall depth and (b) spall strength
calculations for imposed velocities of 10, 25, and 50 m/s with varying horizon and grid
spacing. Spall depth is found to be dependent on the peridynamic horizon, while spall
strength is independent of the horizon.
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5 Discussion

Free surfaces in a peridynamic simulation are subject to calculation errors since the horizon
is not fully populated with material points. When the horizon is not sufficiently small
in comparison to the model size, error in the effective elastic properties of the model is
introduced. As the horizon is made smaller the influence of calculations performed near the
surface decreases. The smallest horizon analyzed, 7.5 mm, 15% of the cylinder diameter,
produced 10% in the effective elastic modulus as shown in Figure 7. Further reduction in
the horizon size or increase in the cylinder diameter will result in more accurate elastic
calculations. Similarly, errors will be introduced along internal voids and nascent fracture
surfaces.

All horizon sizes and grid spacings produced effective compressive yield strengths within 3%
of the target strength, 200 MPa. Furthermore, the friction coefficient and shear strength
can be systemically varied and maintain a constant compressive strength. The scaling laws
developed to relate the parameters of the peridynamic model to the classical Drucker-Prager
model are shown to be correct. Poor numerical convergence is observed for high β.

The use of a dissipation-based bond failure criteria demonstrated that the effective splitting
strength of the concrete cylinder was biased by the fracture energy of the material and by ψ.
Simulations of cylinders with fracture energies of 10 J/m2 and 100 J/m2 produced splitting
strengths in good agreement with the predicted strength. Fracture energies of 1 kJ/m2

and 10 kJ/m2 however, produced effective splitting strengths which deviated significantly
from the predicted value. Increases in the dilatation constant resulted in a higher effective
splitting strength. This phenomena is related to the increase in pressure due to positive
plastic volumetric flow.

The modeling of impact and spall demonstrated that the spall strength is independent of
the horizon size, grid spacing, and impact velocity. The spall depth is dependent on the
horizon size and impact velocity, but does not exhibit dependence on the grid spacing. The
implication of this result is the dependence of the spall depth on the characteristic length of
the continuum, such as the size or spacing of aggregates, pores, and fibers. The peridynamic
modeling is a Lagrangian formulation, i.e., the reference configuration is used to calculate the
extension state at all future deformed configurations. As a result, peridynamics is not well-
suited for high-velocity impacts that induce large plastic deformations and limited fracture,
i.e., ballistic impact of ductile metals such as steel. It is aptly suited for low-velocity impact
of brittle and quasi-britle materials such as concrete, where failure is dictated by the strength
and fracture properties of the material.

Peridynamics facilitates modeling of large deformations involving fracture, inclusion of non-
locality due to underlying microstructure, convergence of dissipative processes during frac-
ture, and material heterogeneity in a single, mathematically consistent framework. Plasticity
and fracture arise organically through the equations of motion of the material points. These
attributes are necessary to model concrete during failure, yet are not provided by finite ele-
ment methods (FEM) [Holmquist et al., 1993], cohesive FEM [Mota et al., 2003], extended
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FEM [Mos and Belytschko, 2002], Eulerian formulations [Fahrenthold and Yew, 1995], or
particle methods such as smoothed particle hydrodynamics [Johnson et al., 1996] or repro-
ducing kernel particle method [Chen and Gunzburger, 2011]. Peridynamics, thus, offers
distinct advantages over other techniques when modeling dynamic fracture in non-local,
pressure-dependent, quasi-brittle materials such as concrete.

Peridynamics offers advantages over other theoretical frameworks and modeling methodolo-
gies, however, these advantages come with a computational cost. The computational cost of
the pressure-dependent plasticity model is compared to that of the classical Drucker-Prager
model using finite element method. The cylinder compression model is used with nominal
node and material point spacings of 5 mm. Compression was modeled until a strain of 0.004,
ensuring that the cylinder was fully plastic. The computational cost of the FEM model was
0.6 CPU-hours, while the computational cost of the peridynamic model was 24 CPU-hours,
i.e., the peridynamic model has approximately 40× the computational cost of the FEM
model. It is recommended that pressure-sensitive plasticity model only be used to solve
engineering problems involving fracture, particularly under tensile loading conditions where
classical techniques do not yield convergence of plastic strain or dissipation [Belytschko et al.,
1986].
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6 Anticipated Impact

The theoretical framework and modeling capability developed herein expands the number
of materials that can be modeled using peridynamics to include pressure-dependent solids
such as rock, concrete, ceramics, and granular materials. An intrinsic material length is
incorporated in the peridynamic theory, the horizon. The horizon size is a material prop-
erty dependent on the underlying structure, or heterogeneity. The size and spacing of the
reinforcing phases in concrete is on the order of millimeters, thus, an intelligently chosen
engineering-scale horizon will reflect the characteristic dimension of these phases.

The next step in modeling heterogeneous, pressure-dependent materials such as concrete
using peridynamics is the development of a heirarchical multi-scale modeling methodology.
The peridynamic horizon naturally serves as the dimension that ”links” neighboring length
scales. An example of two length scales linked via the horizon is shown in Figure 15. The
horizon at Scale 0 corresponds to the domain size at Scale 1. In this example, at Scale 1
reinforcing phases in the form of fibers and aggregate are illustrated.

Scale 0 

Scale 1

Figure 15: Multi-scale peridynamic horizon utilizing the peridynamic horizon to link the
engineering scale, Scale 0, to the scale of the reinforcing phases, Scale 1.

Peridynamic modeling at Scale 1 facilitates the:

1. Calculation of Y enriched with fine-scale degrees of freedom;

2. Calculation of effective elastic constants α and k;

3. Calculation of effective plasticity model parameters t0, β, and ψ; and

4. Determination of crack nucleation and propagation characteristics as well as the de-
formation mechanisms leading to failure.
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The internal damage within a fine scale structure consisting of 2% pores by volume 2 mm
in diameter, loaded in tension and shear, is visualized in Figure 16. In tension, multiple
interacting fracture process zones are observed. Under shear loading, a single critical fracture
process zone is observed. For both loading conditions, initiation and propagation of the
fracture process zone is observed to occur at pores and along planes intersecting pores,
respectively.
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Figure 16: Peridynamic modeling at Scale 1 facilitates the determination of crack nucleation
and propagation characteristics as well as the deformation mechanisms leading to failure in
a concrete microstructure consisting of 2% pore by volume. The development of multiple
fracture process zones is observed in tension; a single critical fracture process zone forms
under shear loading.

Using the pressure-dependent peridynamic plasticity model developed herein as a starting
point, it is proposed that a systematic evaluation of the model be performed to determine
its accuracy for modeling impact, spall, and penetration of a variety of pressure-dependent
materials. Direct comparison to existing models that accurately these phenomena should be
performed. Evaluation metrics should include and not be limited to: spall strength, spall
depth, fragment size distribution, residual velocity, fracture patterns, and computational
cost.

After thorough evaluation of the peridynamic plasticity model against currently implemented
models, a hierarchical multi-scale modeling methodology to calculate and determine the
4 points above will be formalized. Calculation of the multi-scale kinematics and effective
elastic and inelastic properties will be performed on a single material system of interest. The
study will include a parametric analysis of the effect of the geometry and volume of fine-
scale structure on engineering-scale properties. The results will facilitate material design for
tailored properties.
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7 Conclusion

A pressure-dependent peridynamic plasticity model was formulated. Scaling laws were de-
rived to directly relate the parameters of the model to the parameters of the classical Drucker-
Prager plasticity model. Thermodynamic analysis of the material model shows adherence to
the Dissipation Inequality for associated plastic flow. Unit tests, consisting of two material
points and two peridynamic bonds, were conducted to verify the accuracy of the implicit
integration algorithm used to calculate the plastic extension state and force state at every
time step. A dissipation-based bond failure criteria was coupled to the constitutive model
so that bond failure only occurs after yielding. The simulation of compression, splitting,
and low velocity impact of concrete structures confirms the accuracy of the model for simu-
lating pressure-dependent quasi-brittle materials, such as concrete. The peridynamic model
addresses the need of pressure-dependency, non-locality due to underlying microstructure,
convergence of dissipative processes during fracture, and material heterogeneity in a single,
mathematically consistent framework, thus, offering advantages over other theories and mod-
eling methodologies. The work expands the types of materials that can be modeled using
peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction
with the plasticity model was presented.

39



This page intentionally left blank.

40



References

Agwai, Abigail, Guven, Ibrahim, Madenci, Erdogan, 2011. Predicting crack propagation with
peridynamics: a comparative study. International Journal of Fracture 171, 65–78.
URL http://dx.doi.org/10.1007/s10704-011-9628-4

Askari, Abe, Nelson, Karl, Weckner, Olaf, Xu, Jifeng, Silling, Stewart, 2011. Hail impact
characteristics of a hybrid material by advanced analysis techniques and testing. Journal
of Aerospace Engineering 24 (2), 210–217.
URL http://link.aip.org/link/?QAS/24/210/1

ASTM, 2009. C496 standard test method for splitting tensile strength of cylindrical concrete
specimens.

Bazant, Z., Jirsek, M., 2002. Nonlocal integral formulations of plasticity and damage: Survey
of progress. Journal of Engineering Mechanics 128 (11), 1119–1149.
URL

Bazant, Z., Lin, F., 1988a. Nonlocal smeared cracking model for concrete fracture. Journal
of Structural Engineering 114 (11), 2493–2510.
URL

Bazant, ZdenkP., Oh, B.H., 1983. Crack band theory for fracture of concrete. Matriaux et
Construction 16 (3), 155–177.
URL http://dx.doi.org/10.1007/BF02486267

Bazant, Z., Pijaudier Cabot, G., 1989. Measurement of characteristic length of nonlocal
continuum. Journal of Engineering Mechanics 115 (4), 755–767.
URL

Bazant, Z., Tabbara, M., Kazemi, M., PijaudierCabot, G., 1990. Random particle model
for fracture of aggregate or fiber composites. Journal of Engineering Mechanics 116 (8),
1686–1705.
URL

Bazant, Z. P.ant, Zdenk. P., Lin, Feng-Bao, 1988b. Non-local yield limit degradation. Inter-
national Journal for Numerical Methods in Engineering 26 (8), 1805–1823.
URL http://dx.doi.org/10.1002/nme.1620260809

Belytschko, Ted, Baant, Zdenk P., Yul-Woong, Hyun, Ta-Peng, Chang, 1986. Strain-
softening materials and finite-element solutions. Computers & Structures 23 (2), 163 –
180.
URL http://www.sciencedirect.com/science/article/pii/0045794986902105

Chen, X., Gunzburger, Max, 2011. Continuous and discontinuous finite element methods
for a peridynamics model of mechanics. Computer Methods in Applied Mechanics and
Engineering 200 (9-12), 1237 – 1250.
URL http://www.sciencedirect.com/science/article/pii/S0045782510002926

41



di Prisco, M., Mazars, J., 1996. Crush-crack’: a non-local damage model for concrete.
Mechanics of Cohesive-frictional Materials 1 (4), 321–347.
URL http://dx.doi.org/10.1002/(SICI)1099-1484(199610)1:4<321::AID-CFM17>3.0.CO;2-2

Eringen, A.Cemal, 1981. On nonlocal plasticity. International Journal of Engineering Science
19 (12), 1461 – 1474.
URL http://www.sciencedirect.com/science/article/pii/0020722581900720

Fahrenthold, E.P., Yew, C.H., 1995. Hydrocode simulation of hypervelocity impact fragmen-
tation. International Journal of Impact Engineering 17 (13), 303 – 310.
URL http://www.sciencedirect.com/science/article/pii/0734743X9599856M

Ferrara, L., Prisco, M., 2001. Mode i fracture behavior in concrete: Nonlocal damage mod-
eling. Journal of Engineering Mechanics 127 (7), 678–692.
URL

Foster, John, Silling, Stewart A., Chen, Weinong, 2011. An energy based failure criterion
for use with peridynamic states. International Journal for Multiscale Computational En-
gineering 9 (6), 675–688.

Gerstle, W., Sau, N., Silling, S., 2007. Peridynamic modeling of concrete structures. Nuclear
Engineering and Design 237 (1213), 1250 – 1258.

Grassl, Peter, Jirsek, Milan, 2006. Plastic model with non-local damage applied to concrete.
International Journal for Numerical and Analytical Methods in Geomechanics 30 (1), 71–
90.
URL http://dx.doi.org/10.1002/nag.479

Ha, Youn, Bobaru, Florin, 2010. Studies of dynamic crack propagation and crack branching
with peridynamics. International Journal of Fracture 162, 229–244.
URL http://dx.doi.org/10.1007/s10704-010-9442-4

Ha, Youn Doh, Bobaru, Florin, 2011. Characteristics of dynamic brittle fracture captured
with peridynamics. Engineering Fracture Mechanics 78 (6), 1156 – 1168.
URL http://www.sciencedirect.com/science/article/pii/S0013794410004959

Hillerborg, A., Moder, M., Petersson, P.-E., 1976. Analysis of crack formation and crack
growth in concrete by means of fracture mechanics and finite elements. Cement and Con-
crete Research 6 (6), 773 – 781.
URL http://www.sciencedirect.com/science/article/pii/0008884676900077

Holmquist, T.J., Johnson, G.R., Cook, W.H., 1993. A computational constitutive model
for concrete subjected to large strains, high strain rates, and high pressures. In: Murphy,
M.J., Backofen, J.E. (Eds.), Proceedings of the 14th international symposium on ballistics,
American Defense Preparedness Association (ADPA). p. 591600.

Hu, Wenke, Wang, Yenan, Yu, Jian, Yen, Chian-Fong, Bobaru, Florin, 2013. Impact damage
on a thin glass plate with a thin polycarbonate backing. International Journal of Impact

42



Engineering 62 (0), 152 – 165.
URL http://www.sciencedirect.com/science/article/pii/S0734743X13001395

Huang, Dan, Zhang, Qing, Qiao, PiZhong, 2011. Damage and progressive failure of concrete
structures using non-local peridynamic modeling. SCIENCE CHINA Technological Sci-
ences 54, 591–596.
URL http://dx.doi.org/10.1007/s11431-011-4306-3

Johnson, Gordon R., Stryk, Robert A., Beissel, Stephen R., 1996. Sph for high velocity
impact computations. Computer Methods in Applied Mechanics and Engineering 139 (14),
347 – 373.
URL http://www.sciencedirect.com/science/article/pii/S0045782596010894

Macek, Richard W., Silling, Stewart A., 2007. Peridynamics via finite element analysis.
Finite Elements in Analysis and Design 43 (15), 1169 – 1178.
URL http://www.sciencedirect.com/science/article/pii/S0168874X07001035

Millon, O., Riedel, W., Thoma, K., Fehling, E., Noldgen, M., 2009. Fiber-reinforced ultra-
high performance concrete under tensile loads. In: DYMAT 2009. pp. 671–677.

Mitchell, John A., May 2011. A nonlocal, ordinary, state-based plasticity model for peridy-
namics. Sandia National Laboratories, Albuquerque, NM, Sandia Report SAND2011-3166.

Mota, A., Klug, W. S., Ortiz, M., Pandolfi, A., 2003. Finite-element simulation of firearm
injury to the human cranium. Computational Mechanics 31 (1-2), 115–121.
URL http://dx.doi.org/10.1007/s00466-002-0398-8

Mos, Nicolas, Belytschko, Ted, 2002. Extended finite element method for cohesive crack
growth. Engineering Fracture Mechanics 69 (7), 813 – 833.
URL http://www.sciencedirect.com/science/article/pii/S001379440100128X

Needleman, A., 1988. Material rate dependence and mesh sensitivity in localization problems.
Computer Methods in Applied Mechanics and Engineering 67 (1), 69 – 85.
URL http://www.sciencedirect.com/science/article/pii/0045782588900692

Oterkus, E., Barut, A., Madenci, E., 2012. Peridynamics based on principle of virtual work.
Cited By (since 1996)1.
URL http://www.scopus.com/inward/record.url?eid=2-s2.0-84881382062partnerID=40md5=b9f03e2285a626f9c5325746070711ad

Parks, M.L., Littlewood, D.J., Mitchell, J.A., Silling, S.A., 2012. Peridigm users guide.
Sandia National Laboratories, Report.

Planas, J., Guinea, G.V., Elices, M., 1996. Basic issues on nonlocal models: Uniaxial model-
ing. Departamento de Ciencia de Materiales, ETS de Ingenieros de Caminos, Univ. Polite
cnica de Madrid, Ciudad Univ. sn., 28040 Madrid, Spain., Report 96-jp03.

Silling, S., 2000. Reformulation of elasticity theory for discontinuities and long-range forces.
Journal of the Mechanics and Physics of Solids 48 (1), 175 – 209.

43



Silling, S., 2010. Linearized theory of peridynamic states. Journal of Elasticity 99, 85–111.
URL http://dx.doi.org/10.1007/s10659-009-9234-0

Silling, S.A., Askari, E., 2005. A meshfree method based on the peridynamic model of solid
mechanics. Computers & Structures 83 (17-18), 1526 – 1535.

Silling, S., Epton, M., Weckner, O., Xu, J., Askari, E., 2007. Peridynamic states and consti-
tutive modeling. Journal of Elasticity 88, 151–184.

Silling, S.A., Lehoucq, R.B., 2010. Peridynamic theory of solid mechanics. In: Aref, Hassan,
van der Giessen, Erik (Eds.), Advances in Applied Mechanics. Vol. 44 of Advances in
Applied Mechanics. Elsevier, pp. 73 – 168.
URL http://www.sciencedirect.com/science/article/pii/S0065215610440028

Sorelli, Luca, Constantinides, Georgios, Ulm, Franz-Josef, Toutlemonde, Franois, 2008. The
nano-mechanical signature of ultra high performance concrete by statistical nanoindenta-
tion techniques. Cement and Concrete Research 38 (12), 1447 – 1456.
URL http://www.sciencedirect.com/science/article/pii/S0008884608001567

Strmberg, Lena, Ristinmaa, Matti, 1996. Fe-formulation of a nonlocal plasticity theory.
Computer Methods in Applied Mechanics and Engineering 136 (12), 127 – 144.
URL http://www.sciencedirect.com/science/article/pii/0045782596009978

Xu, Jifeng, Askari, Abe, Weckner, Olaf, Silling, Stewart, 2008. Peridynamic analysis of
impact damage in composite laminates. Journal of Aerospace Engineering 21 (3), 187–
194.
URL http://link.aip.org/link/?QAS/21/187/1

44



DISTRIBUTION:

1 M. Zhou
George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
801 Ferst Dr. NW
Atlanta, GA 30332

1 J. Foster
Petroleum and Geosystems Engineering
University of Texas - Austin
200 E. Dean Keeton St., Stop C0300
Austin, TX 78712-1585

1 MS 1322 S. Silling, 1444

1 MS 1320 M. Parks, 1442

1 MS 1320 R. Lehoucq, 1442

1 MS 0840 H. E. Fang, 1554

1 MS 1322 D. Littlewood, 1444

1 MS 1322 J. Mitchell, 1444

1 MS 9042 J. Ostien, 8256

1 MS 9042 T. Vogler, 8256

1 MS 0899 Technical Library, 9536 (electronic copy)

45






